EXAMPLE ONLY Project Title: Radome for High Altitude Synthetic Aperture Radar (R4SAR)	
BACKGROUND	TECHNOLOGY
Participant Organisation: University of Bourke	• Basic description of technology relevant to Proposal: The rCFT relies on single
Department & Group: Composites Engineering	sided CNC cut female tooling and a combination of diaphragm/tool vacuum and
• Point of Contact: Prof. Joe Bloggs, E: joe.bloggs@UoB.edu.au, P: +61 2 5555 5555	flexible male tooling to deep draw stacks of composite materials. It can accommodate
• Background to work: The University of Bourke (UoB) has been collaborating with	a range of component thicknesses from sub mm single layers of material to tens of
DST, and Queensland defence industry in the development of a rapid Composite	plies at 2-3 cm in thickness. A range of composite fibre geometries can also be
Forming Technique (rCFT) for use in the mass manufacture of high curvature ballistic	accommodated from uni-axial non-woven materials through to multi-axis non-woven
protection for personnel and vehicles. More recently UoB has been approached by	and plain woven composite fabrics. With active heating and cooling it is capable of co-
Acme Radomes Australia Pty Ltd to explore the possibility of utilising rCFT for the	processing thermoset and thermoplastic composites such as CFRP and UHMWPE
manufacture of radomes to protect miniaturised Synthetic Aperture Radar arrays they	both with applications in radomes.
have developed for use on UAS. On the basis that many of the composite materials	• Current stage of development (TRL): With respect to the forming and manufacture
utilised for ballistic protection are compatible with radome applications the collaboration	of ballistic combat helmet shells rCFT currently stands at TRL 7. In order to adapt the
has identified this program as an opportunity to explore the adaptation of rCFT for	technology for this application, starting with a component design concept & materials
manufacture of radomes for miniaturised SAR arrays (MicroSAR). Development of an	specification, new tooling will have to be designed and simulated dropping us back to a
automated manufacturing route for these items would lead to reduced attenuation,	starting point of TRL 4.
improved lifespan and increased platform performance for UAS or satellite outfitted with	• Describe the Technical Goal: The aim of the activity will be to demonstrate a
MicroSAR. This is due to the repeatability of an automated process combined with the	repeatable manufacturing route for a protective MicroSAR radome that has been
protection and aerodynamic advantages a SAR radome would enable when compared	developed with reference to an existing sensor array and application platform (e.g.
to hand manufactured radomes or exposed sensor arrays.	UAS or small satellite). (TRL 6-7)
APPLICATION TO DEFENCE OR DEFENCE INDUSTRY	PROGRAMMATICS
• Are you or have you worked with the ADF (or other military) on this technology?	 Other organisations collaborating in the Project (Industry/Research/Other):
Who?: The team previously worked with Dr. Hector Bowlin and Dr. Mack Long in the	Acme Radomes Australia Pty Ltd (note: additional defence guidance and Tier 1
soldier performance division of NZ Defence Technology Agency. However since	platform integration guidance would be welcome additions to the collaboration).
reaching TRL 6 with respect to ballistic helmets the team has largely continued	 Approx. how many people?: 1.0 FTE Post Doctoral Research Fellow & 1.0 FTE
development of rCFT in house with Queensland defence armour manufacturers.	Defence / Industry engineering support
 How might the military or defence industry use this technology?: Starting with 	 Given that number of people – how long?: 2 years
UAS and satellite platforms defence industry would use the rCFT technology to reduce	 What resources is the group able to bring to the project – financial, in-kind
the reject rate and increase the repeatability and quality of radomes used with	staff, in-kind facilities: Use of the rCFT equipment, composite lay-up facilities and
MicroSAR and other radar related applications. This in turn would lower the costs of	process disposables can be contributed in-kind by UoB. Acme Radomes Australia Pty
acquisition for Defence and increase the effectiveness and longevity of their MicroSAR	Ltd is willing to provide materials, radome design expertise and 0.4 FIE engineering
arrays on UAS and satellite.	support in-kind to the activity, as well as making a financial contribution to the conduct
• Domain (Land, Sea or Air): SAR is used across joint applications.	of the project in exchange for commercial rights to the technology. UoB is already a
• Development path: With Acme Radomes Australia Pty Ltd as part of the collaboration	participant of the DMTC.
the project can proceed with comparatively little active support from defence.	• Other resources required: Over the life of the project external services will be
Integration guidance will be required from a relevant platform prime or designer, as well	required to facilitate tooling simulation, manufacture of revised tooling, EM testing and
as ADF assistance in identifying acceptable attenuation vs. sensor protection vs.	ground or platform based component qualification. Some or all of these could be
platform performance trade-offs for development of milestone Target Performance	provided through a combination of Defence and industry prime participation, nowever if
Measures (I PMs). With these guidance mechanisms in place the project would	purely outsourced would cost approximately \$150-\$200k over the two years of the
an EM facility, followed by UAS trials, and ultimately qualification for satellite application.	

EXAMPLE ONLY